

WUFI®

Guideline for Assessing the Risk of Mould Growth with WUFI®

Date: July 2024

Content

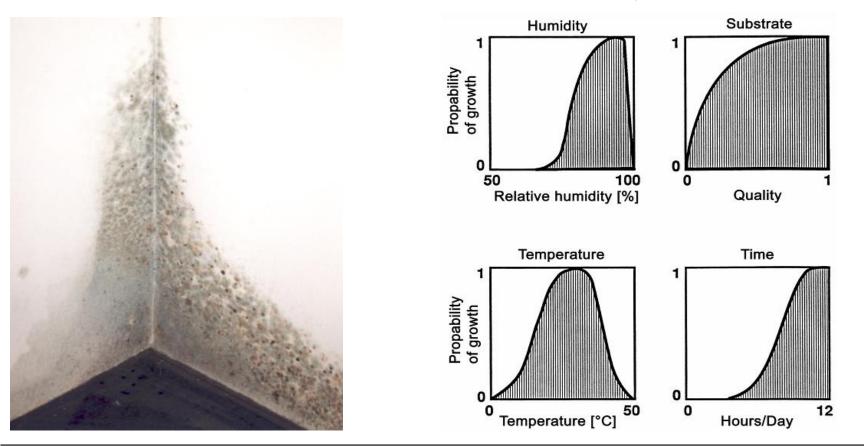
Basics

•	Mould Growth in and on Components	<u>slide 3</u>
•	Factors Influencing Mould Growth	<u>slide 4</u>
WUFI®	Bio	
•	Evaluation of Isopleths	<u>slide 6</u>
•	Model Spore for Assessing the Moisture Behaviour	<u>slide 9</u>
•	Proceeding	
•	Notes and Limitations	<u>slide 11</u>
•	Application	<u>slide 12</u>
Examp	les	slide 19
•	A: Pitched metal roof with a moderate vapour retarder	<u>slide 22</u>
•	B: Pitched metal roof with a moisture-variable vapour retarder	<u>slide 40</u>

Basics: Mould Growth in and on Components

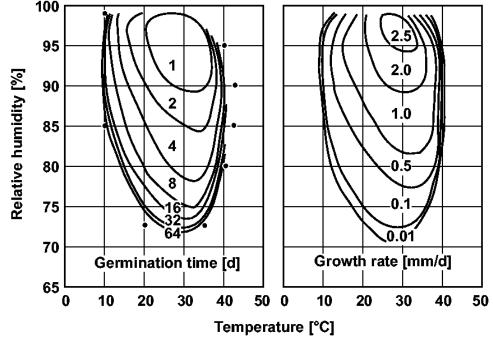
Mould growth in occupied dwellings has the following effects on the occupants, among others:

- Aesthetic concerns
- Hygienic concerns
- Potential health hazards due to the production and dissemination of harmful substances



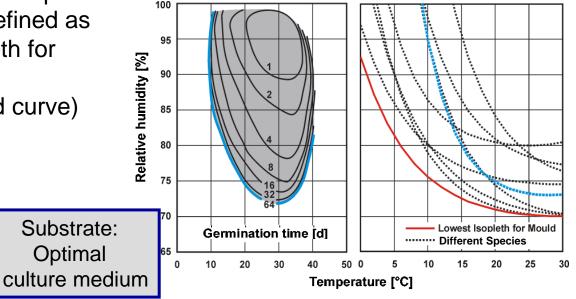
Influencing Factor	Reality	<u>Consideration</u>
Moisture	Most important influence	Can be influenced or determined
Temperature Strong influence		by the planner through construction and material selection respectively through consideration of real usage.
Time	Strong influence	(These factors are also considered
Substrate	Nutrients from substrate and contaminated surfaces	` in WUFI [®] Bio)
pH-value	Is influenced by the fungi themselves – difficult to predict	
Substrate Nutrients from substrate and contaminated surfaces DH-value Is influenced by the fungi the		Mostly difficult to predict – should
Oxygen	Normally available	in doubt be considered favourable.
Presence of spores	Normally available everywhere	(These factors cannot be
Surface roughness Lighter contamination		considered in WUFI [®] Bio)
Biological interactions	unavoidable	

Growth requirements for mould:


Reduction to the essential influencing factors temperature and humidity, their combined exposure time as well as the substrate quality.

Germination and growth conditions of single mould species:

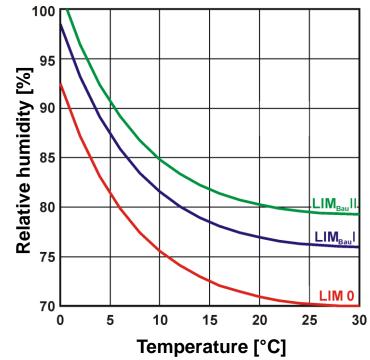
- Mould spores are exposed to different combinations of temperature and relative humidity, and the times needed for germination are plotted in a temperature-humidity diagram. The curves of equal germination time are called isopleths.
- Isopleth systems for germination time and growth rate of Aspergillus restrictus (Smith*):


Smith, S. L.; Hill, S. T.: Influence of temperature and water activity on germination and growth of *Aspergillus restrictus* and *Aspergillus versicolor*. Transactions of the British Mycological Society Vol. 79 (1982), H. 3, S. 558 - 560.

Combination of the lowest growth conditions to LIM-Curves:

- The lowest germination isopleth (left figure blue curve) separates the diagram into the region where ambient conditions allow the spore to germinate and the region where germination is not possible.
- For all practical relevant mould species, the lowest germination isopleths are combined into one diagram (right figure)

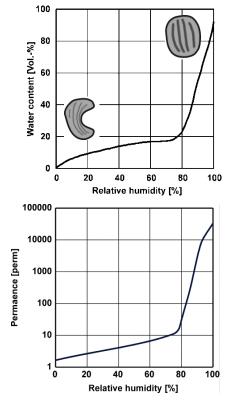
and then the lower envelope of this set of curves is defined as generic Lowest Isopleth for Mould growth (LIM, right figure – red curve)

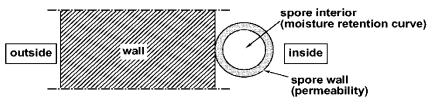


WUFI[®] Bio: Evaluation of Isopleths

Adaption of the LIM-curves from optimum substrate to building materials:

- Experimental determination of the isopleth systems by cultivating the mould on a culture medium (biological full medium).
- In buildings generally only substrates with a lower nutrient supply are available → consideration of the nutrient quality by the use of two substrate classes for building materials: 100
 - II less bio-utilizable substrates (mineral building materials)
 - I bio-utilizable substrates (wall paper, wood, strongly contaminated surfaces)
 - 0 optimum substrate (biological full medium)




WUFI® Bio: Model Spore for Assessing the Moisture Behaviour

Calculation of a generic model spore:

- A mould spore has a certain osmotic potential which enables it to take up water from its environment
 → mathematically this potential can be described by a moisture storage function.
- The spore wall has a moisture-dependent diffusion resistance, which delays the moisture exchange with the environment.
- With changing ambient temperature and humidity the water content in the spore also changes
 → by reaching a certain critical water content, the spore germinates.

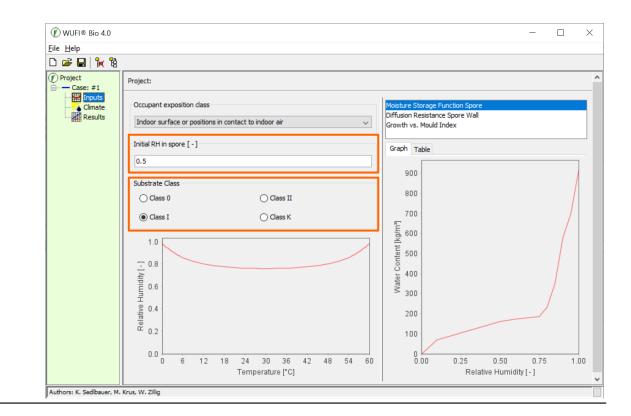
- 1. Comparison of the calculated conditions with the LIM curves shows whether temperature and humidity combinations occur, in which longterm germination of the spore would be expected.
- 2. If so, evaluation of the position with WUFI[®] Bio and calculation of the temperature-dependent water content in the model spore.
- 3. If the limit water content is exceeded in the spore, the spore germinates and mycelium growth starts.
- 4. The expected growth is then given according to the growth isopleths and summed up.
- 5. The signal light helps to assess the risk.

Download-Link: <u>WUFI® Add-ons | WUFI (en)</u>

WUFI[®] Bio: Notes and Limitations

- The biohygrothermal model is an assessment of the risk of mould growth, it is not necessarily a realistic simulation of the growth processes in all points.
- Usually, the predicted spore germination times may be shorter, or the growth rates may be higher than they are under real conditions (safe side)!
- It is assumed that mycelium growth stops when the moisture content in the spore falls below the critical water content, and instantly resumes when the critical water content is exceeded again.
- The biohygrothermal model is only applicable for interior surfaces. In the case of differing boundary conditions (for example in the construction or on exterior surfaces) it must be considered in individual cases, whether the model can be used. Maybe other effects can impede the growth: heating through solar radiation, disinfection through UV radiation or washing-off through rain. However, comparative evaluations can also be carried out at these positions.

Input data:


- Specification of the occupant exposition class. This indicates the extent to which the user gets into contact with the evaluated position of the component (respectively with the mould or spore).
- Three classes are available:
 - Indoor surface or position in contact to indoor air (e.g. interior wall surface, installation layer, etc.)
 - Surface inside construction without direct contact to indoor air (e.g. unused roof space, outside ventilated cavity of a wall, etc.)
 - No impact on occupants expected (e.g. perimeter insulation, cavities in multi-layered, rendered masonry, etc.)

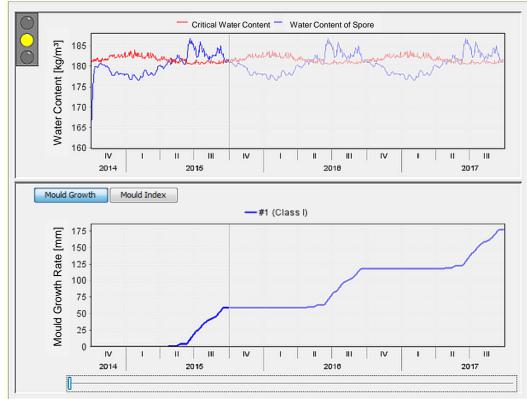
🕖 WUFI® Bio 4.0		- 🗆 X	
<u>File</u> <u>H</u> elp			
🗅 😅 🖬 🙀 😫			
Project	Project:		^
Climate Results	Occupant exposition class Indoor surface or positions in contact to indoor air	Moisture Storage Function Spore Diffusion Resistance Spore Wall Growth vs. Mould Index	
	Initial RH in spore [-]	Graph Table	
	U.5 Substrate Class	900 -	
	⊖ Class 0 ⊖ Class II	800 -	

Input data:

- Specification of the initial humidity in the simulated spore. This only affects the early stages of the simulation. After a while, the water content in the spore will be dominated by the ambient conditions. (recommendation: 0.5)
- Selection of the substrate class:
 - Class 0
 - Class I
 - Class II
 - Class K (growth properties of species critical to health)

Input data:

- Specify the climatic conditions to which the model spore is exposed.
- If you have started WUFI[®] Bio directly out of WUFI[®] or Animation1D, the climate conditions will automatically be transferred to WUFI[®] Bio and displayed in this dialog.

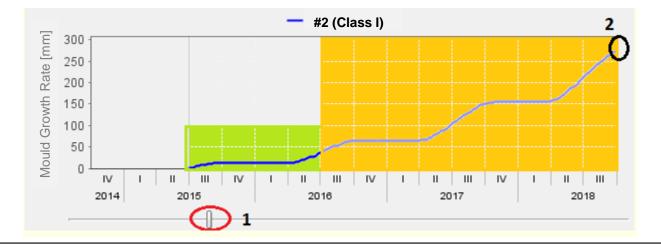

Note: If WUFI[®] Bio is started directly out of WUFI[®], only the climate conditions of the interior surface are shown. To evaluate a different position, WUFI[®] Bio must be started from Animation1D. Here you can select any grid element.

 Otherwise, climate data can be imported manually (e.g. measurement data).

- Top diagram: calculated water content in the spore (blue) and the critical water content (red).
- Bottom diagram: mycelium growth (in mm) to be expected after germination.
- Growth rate: Describes by how many millimeters the edge of the infested area moves outward over time; the total growth is then the radius of a mould blotch (in a petri bowl).
- Alternatively: Result of the evaluation can be expressed in terms of the "mould index".

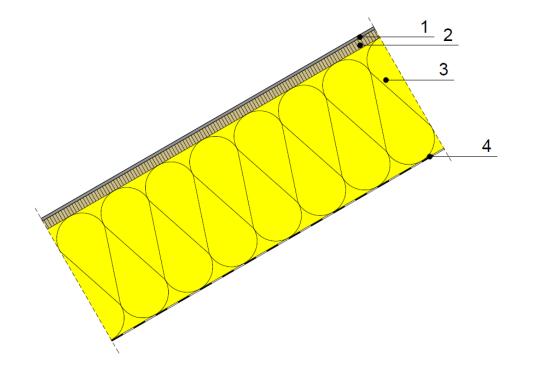
- The Viitanen model uses a six-level "Mould Index" describing the intensity and spread of the growth.
- Since the "Mould Index" can be interpreted more easily, WUFI[®] Bio's mould growth can automatically be translated into the "Mould Index".

Index	Description
0	no growth
1	some growth visible under microscope
2	moderate growth visible under microscope, coverage more than 10%
3	some growth detected visually; thin hyphae found under microscope
4	visual coverage more than 10%
5	coverage more than 50%
6	tight coverage, 100%



• The signal light presents a general assessment of the mould growth risk.

			Occupant exposition class	
		Indoor surface or position in contact to indoor air	Surfaces inside constructions without direct contact to indoor air	No impact on occupants expected
\bigcirc	Mould Growth (g_m)	< 129 mm/year	< 176 mm/year	< 239 mm/year
$\overline{\bigcirc}$	Mould-Index (MI)	≤ 1	≤ 2	≤ 3
\bigcirc	Assessment		Usually acceptable.	
\bigcirc	Mould Growth (g_m)	129 < g _m ≤ 176 mm/year	176 < g _m ≤ 239 mm/year	> 239 mm/year
$\overline{\bigcirc}$	Mould-Index (MI)	1 <i>< MI</i> ≤ 2	2 < <i>MI</i> ≤ 3	> 3
\bigcirc	Assessment	Additional criteria	a or investigations are needed for assess	sing acceptability.
	Mould Growth (g_m)	> 176 mm/year	> 239 mm/year	
Õ	Mould-Index (MI)	> 2	> 3	
\bigcirc	Assessment		Usually not acceptable.	
\bigcirc \bigcirc \bigcirc \bigcirc		Calculation	period is less than 1 year. No assessme	ent possible.


- The evaluation period is limited to only one year (green area). The slider (1) allows the user to shift the evaluation period within the calculation period.
- The growth in the following period (orange area) is a forecast based on the mycelium growth of the first year.
- If the evaluation period is changed using the slider (1), both the starting date of the mycelium growth assessment as well as the maximum growth at the end of the simulation period (2) change.

Examples: Problem Description

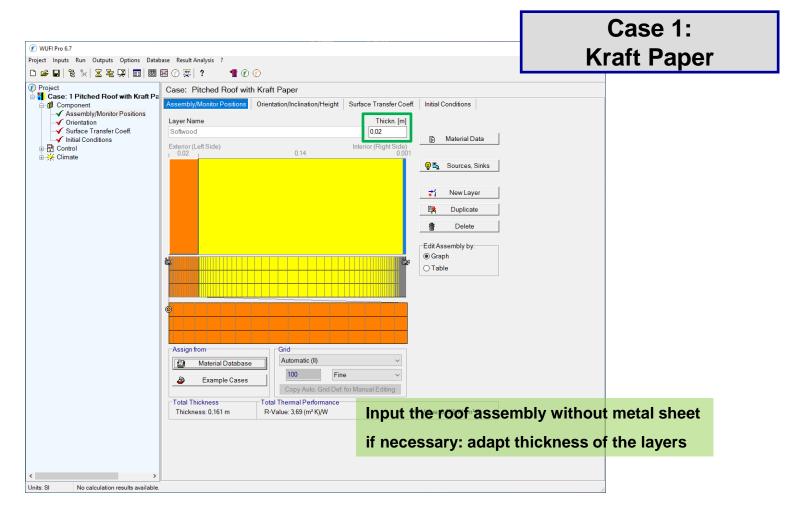
Using the example of a pitched roof with metal sheet and two different interior vapour retarders, the procedure for assessing mould risk is explained.

- 1 Metal roofing (zinc)
- 2 Wooden sheathing
- 3 Insulation
- 4 Vapour retarder

Note: It is assumed that the wooden sheathing has an increased initial moisture content!

Assembly (from outside to inside):

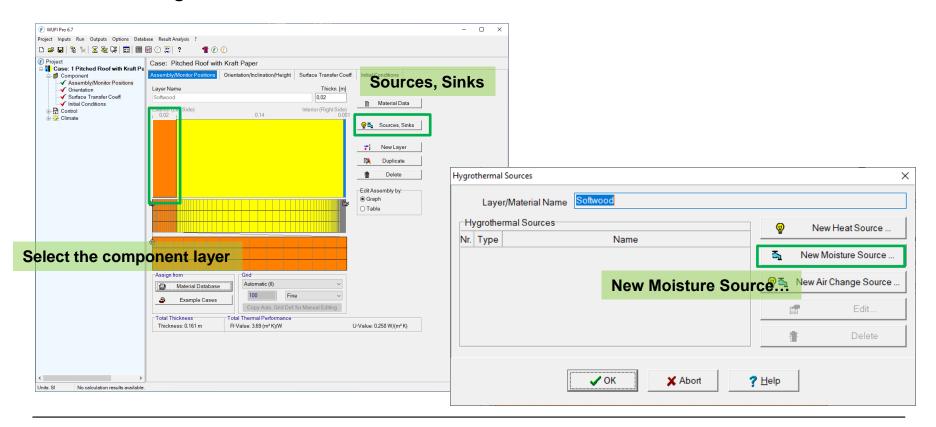
- Zinc roofing $(s_d = 50 \text{ m})$
- Wooden sheathing (Softwood)
 0.02 m
- Mineral Wool (heat cond.: 0.04 W/mK)
 0.14 m
- Case 1: Kraft Paper (s_d = 3 m)
 Case 2: PA-Membrane (moisture-variable)



Boundary Conditions:

- Pitched roof (50° to the North)
- Zinc surface (a = 0.6; ε = 0.4)
- Outdoor Climate: Holzkirchen
- Indoor Climate: EN 15026 with medium moisture load +5%
- Air tightness of the der building envelope: $q_{50} = 3 \text{ m}^3/\text{m}^3\text{h}$
- Stack height: 5 m
- Initial moisture in the wooden sheathing: 25 % by mass

Input: Component - Assembly / Monitor Positions

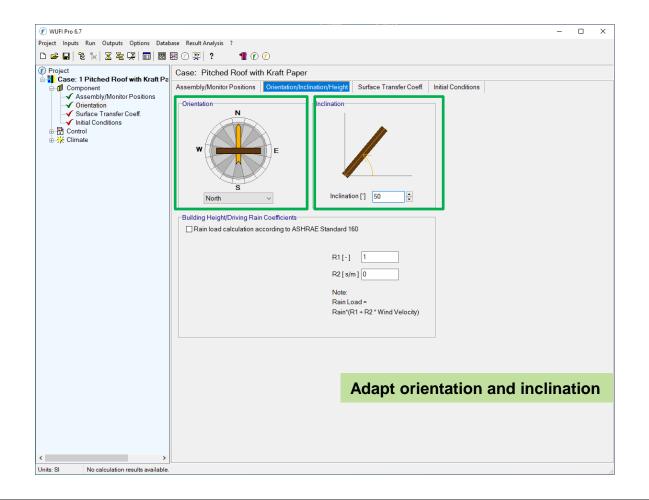


Case 1: Consideration of infiltration moisture

Input: Component - Assembly / Monitor Positions

Consideration of the infiltration source in the sheathing according to EN 15026.

Case 1: Consideration of infiltration moisture


Input: Component - Assembly / Monitor Positions

Moisture source in the interior 5 mm of the sheathing.

Moisture Source	×
Name Infiltration	Interior 5 mm of the sheathing
Spread Area One Element Several Elements Whole Layer Source Type Transient from File Eraction of Bain Load Air Infiltration model IBP Constant Monthly Moisture Load Envelope Infiltration q50 [m ⁹ /(m ² h)]	Start Depth in Layer [m] 0.015 End Depth in Layer [m] 0.02 Source Term Cut-Off [kg/m³] O No Cut-Off O Cut-Off Cut-Off at Max. Water Content © Cut-Off at Free Water Saturation User-Defined
3 Air Tightness Class B	i (DIN 4108, tested <= 3 m ^s /m ² h) ∨ Stack Height [m] 5 tion Overpressure [Pa] 0
Adapt	t infiltration source
↓ ОК	K Cancel ? Help

Input: Component - Orientation

Input: Component – Surface Transfer Coeff.

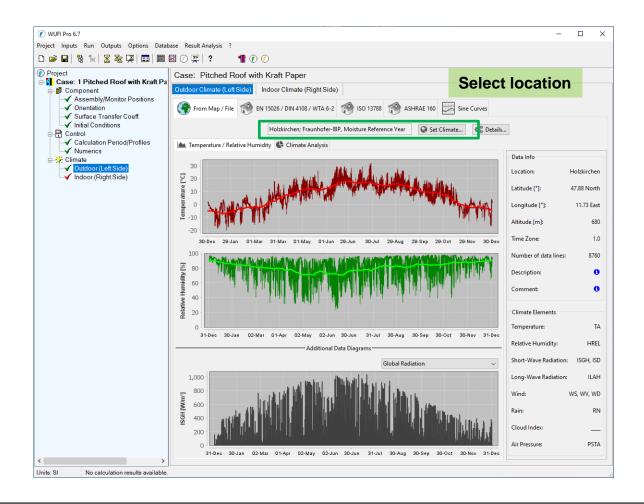
Case: Pitched Roof with Kraft Paper					
Assembly/Monitor Positions Orientation/Incline	ation/Height Surface Transfer Coeff. Initial C	Conditions			
Exterior Surface (Left Side)					
Heat Transfer Coefficient [W/(m ² K)]	19 Roof	~	Heat Transfer Co	officient	
includes long-wave radiation parts [W/(m ² K)]	6.5		for Roof = 19 W/r		
wind-dependent			101 KOOI = 19 W/I		
sd-Value [m]	50 User-Defined	~	s _d -value of the m	etal sheet = 50 m	
	Note: This setting does not affect rain absorp	rption	-		
Short-Wave Radiation Absorptivity [-]	0,6 User-Defined	~	Colouring of the	metal sheet (a _e =	0.6)
Long-Wave Radiation Emissivity [-]	0.4				
Reduction factors caused by shading:					
for absorptivity [-]	1.0 No shading	~	Switch on Explic	it Radiation Balar	$ce (\epsilon = 0.4)!$
for emissivity [-]	1.0		· · · ·		
Explicit Radiation Balance	Note: This option takes radiative cooling due emission into account. Sensitive cases may accurate counterradiation data in the weather	require sufficiently			
Ground Short-Wave Reflectivity [-]	0.2 Standard value	~			
Adhering Fraction of Rain [-]	No absorption	~	No absorption!		
Interior Surface (Right Side) Heat Transfer Coefficient [W/(m ² K)]	8 (Roof)				
sd-Value [m]	No coating	Adapt su	rface transfer coeffi	cients!	

Input: Component – Initial Conditions

🕐 WUFI Pro 6.7		- 🗆 X	
Project Inputs Run Outputs Options Datab	abase Result Analysis ?		
🗅 🚅 🖬 🐮 🔭 🛣 🧏 📮 🎫	🗱 🕐 🛒 📍 📲 🕐 🕐		
Project Case: 1 Pitched Roof with Kraft Pa	Case: Pitched Roof with Kraft Paper		
🖨 💋 Component	Assembly/Monitor Positions Orientation/Inclination/	Height Surface Transfer Coeff. Initial Conditions	
	 Initial Moisture in Component ○ Constant Across Component ● In each Layer ○ Read from File 	Initial Temperature in Component Constant Across Component Read from File	
	Assign Typical Built-In Moisture	Initial Temperature in Component ['C] 20	
	r Initial Water Content in Different Layers		
	Material	Thickn. Water	
	No.	Content [m] [trg[m]]	
	1 Softwood	0.02 100	
	2 Mineral Wool (neat cond.: 0,04 W/mK)	0.14 1./9	
	3 Kraft Paper	0.001 1.8	
		Initial water content in the shea	thing:
		25 % by mass corresponds to 1	00 ka/m
		(at a bulk density of 400 kg/m ³)	j
< >			
Units: SI No calculation results available.	в.	ii.]

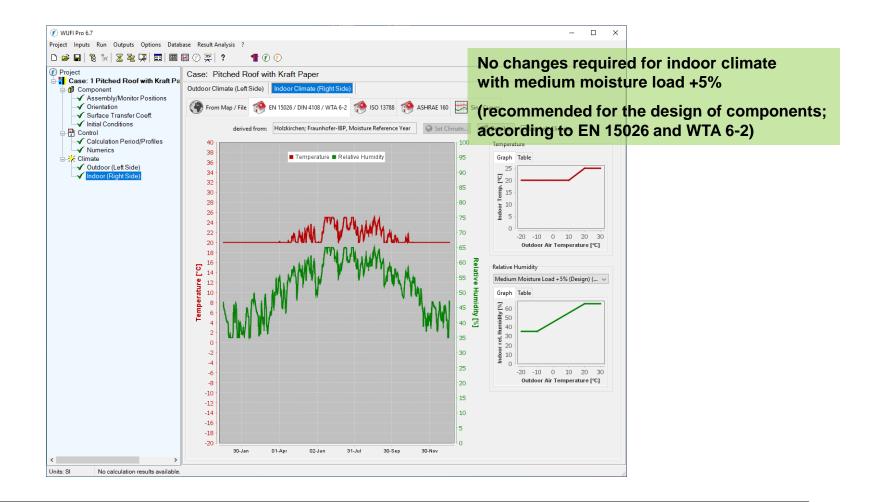
Input: Control – Calculation Period / Profiles

0.67							~
l Pro 6.7 Inputs Run Outputs Options Database f	Pocult Applusic	2				- 0	×
n 😫 🗽 🛣 🐱 📮 🎫 🖽 🖼 🤇		• 📲 🕐 🕐					
Pitched Roof with Kraft Pa		d Roof with Kra					
nt Ibly/Monitor Positions	culation Perio	d / Profiles Nun	merics				
ntation S	tart_End / P	Profiles					
e Transfer Coeff. Conditions	alculation	Profiles	Date	Hour	New		
		Profile 1	01.10.2023	00:00:00	-		
riod/Profiles		Profile 2	01.10.2023	00:00:00			
		riolite 2	01.10.2020	00.00.00	Delete		
						-	
						-	
					Сору		
			06.12.2023	00:00:00	Insert		
	Time Steps [[h] 1					
						No change required	
						ne enange required	
						(Default setting of 3 year	ars
						beginning of October for	
						permeable components	s us
>						permeable components sufficient)	s us



Input: Control – Numerics

🕐 WUFI Pro 6.7		- 🗆 ×				
Project Inputs Run Outputs Options Data	base Result Analysis ?					
🗅 🚅 🖬 🐮 🔭 🛣 🧏 📰 📰	翻 🕜 🛒 📍 📲 🕐 🕖					
Project Case: 1 Pitched Roof with Kraft Pa	Case: Pitched Roof with Kraft Paper					
🛱 🗊 Component	Calculation Period / Profiles Numerics					
 Assembly/Monitor Positions Orientation 	Mode of Calculation					
	Heat Transport Calculation					
Initial Conditions □ P Control	Moisture Transport Calculation					
✓ Calculation Period/Profiles	Hygrothermal Special Options					
e → Climate	Excluding Capillary Conduction					
	Excluding Latent Heat of Evaporation					
	Excluding Temperature Dependency in Latent Heat of Evap	poration				
	Excluding Latent Heat of Fusion					
	Excluding Temperature and Moisture Dependency of Them	nal Conductivity				
	Numerical Parameters					
	□ Increased Accuracy					
	Adapted Convergence					
	Adaptive Time Step Control					
	Geometry					
	Cartesian					
		· · · · · · · · · · · · · · · · · · ·				
	O Radially Symmetric	No changes required				
		(default setting suitable for mos				
< >>						
Units: SI No calculation results available.						



Input: Climate - Outdoor (Left Side)

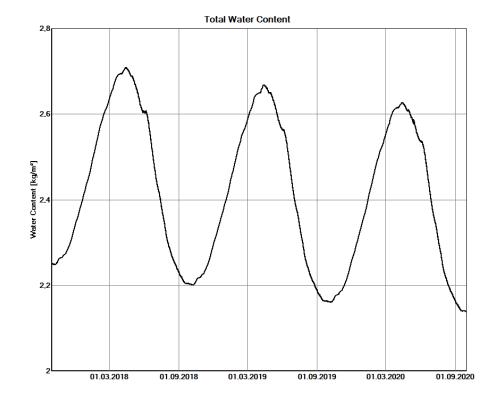
Input: Climate – Indoor (Right Side)

Evaluation: Numerics

Г

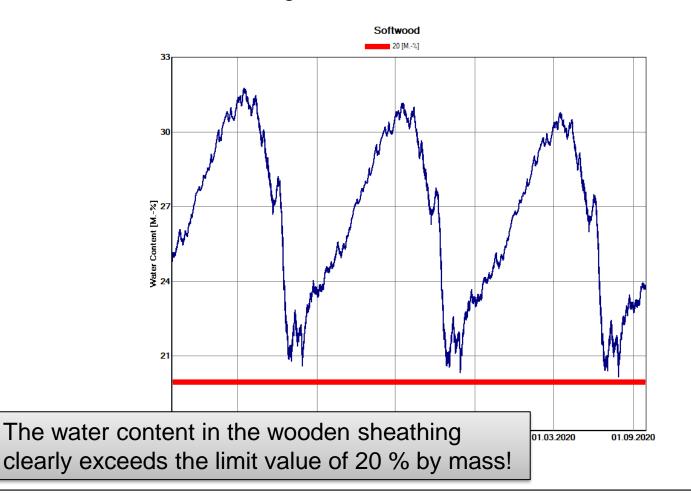
For more information on the assessment of the numerical quality, see "<u>Guideline for the evaluation and</u> <u>assessment of hygrothermal calculation results</u>".

Note:			×
Slow calculation and man	У		^
convergence failures	te	16.07.20	24 11:32:02
indicate rather difficult		0 min	n,49 sec.
convergence.		01.10.2023	3/01.10.2026
No. of Convergen	ce Failures		50
Check for numerica	al quality		
Integral of fluxes,	left side (kl,dl)	[kg/m²]	0,0 -0,18
Integral of fluxes,	right side (kr,dr)	[kg/m²]	0.0 0.36
Balance 1		[kg/m²]	-0,13
Balance 2		[kg/m²]	-0,17
Water Content [kg/	-		
Many convergence fail	uras but balances OKI	Min	Max.
, ,	ures, but balances OK!		2,7
	ulate with adaptive time step		
(Numerics: switch on a	adaptive time step control). C	Generally	Max. 🗸



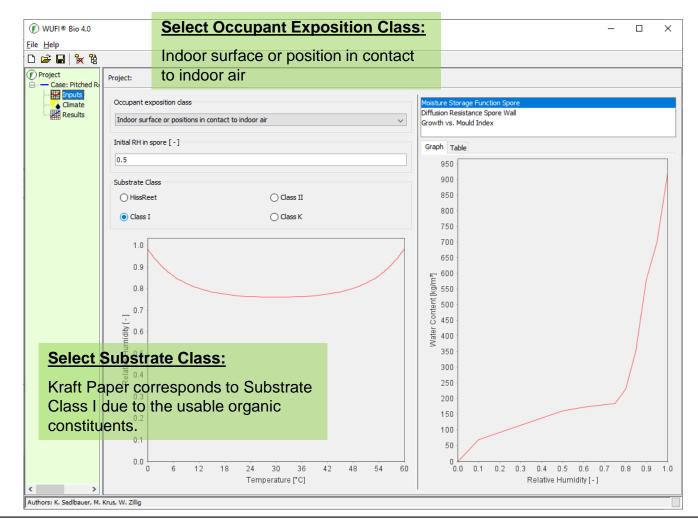
Evaluation: Numerics – with Adaptive Time Step Control

Calculation: Time and Date			16.07.202	4 11:42:30
Computing Time			0 min,	53 sec.
Begin / End of calculation			01.10.2023	/ 01.10.2026
No. of Convergence Failures				0
Check for numerical quality				
Integral of fluxes, left side (kl,dl)			[kg/m²]	0,0 -0,16
Integral of fluxes, right side (kr,dr)			[kg/m²]	0,0 0,37
Balance 1			[kg/m²]	-0,12
Balance 2			[kg/m²]	-0,16
Water Content [kg/m²]	Start	End	Min.	Max.
Total Water Content	2,25	2,13	2,13	2,71
Water Content [kg/m³]				
Layer/Material	Start	End	Min.	Max.


Evaluation: Total water content

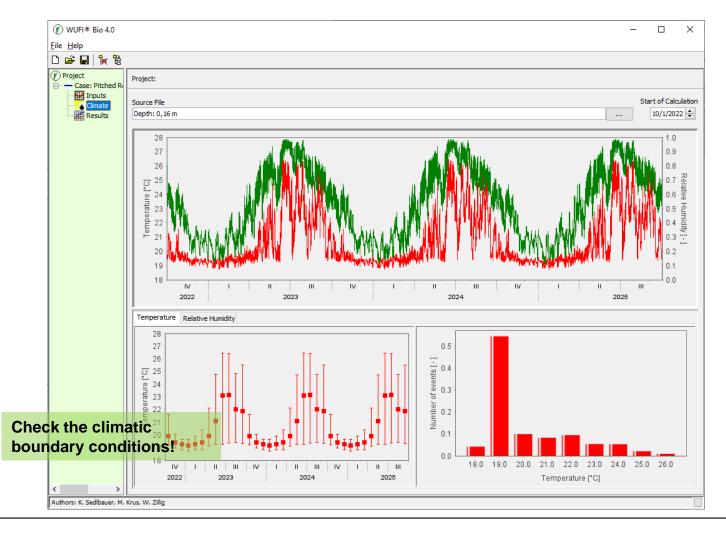
Case 1: Evaluation of the Wood Moisture in the Sheathing

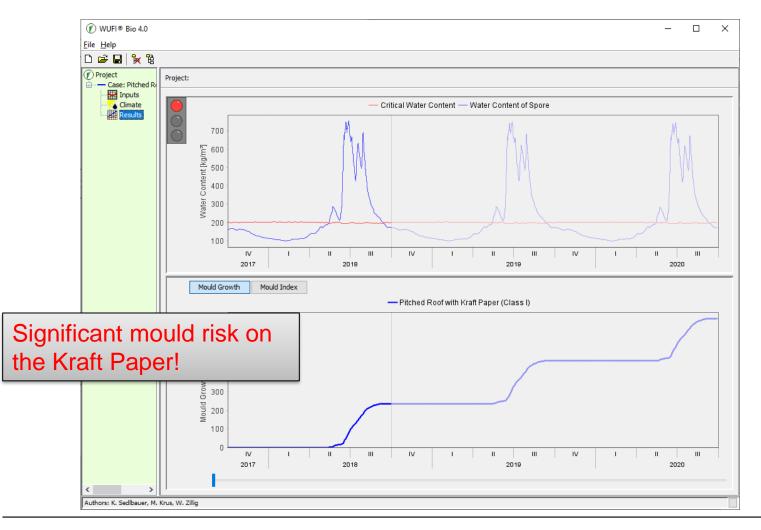

Evaluation: Wood moisture in the sheathing – according to German Standard DIN 68800



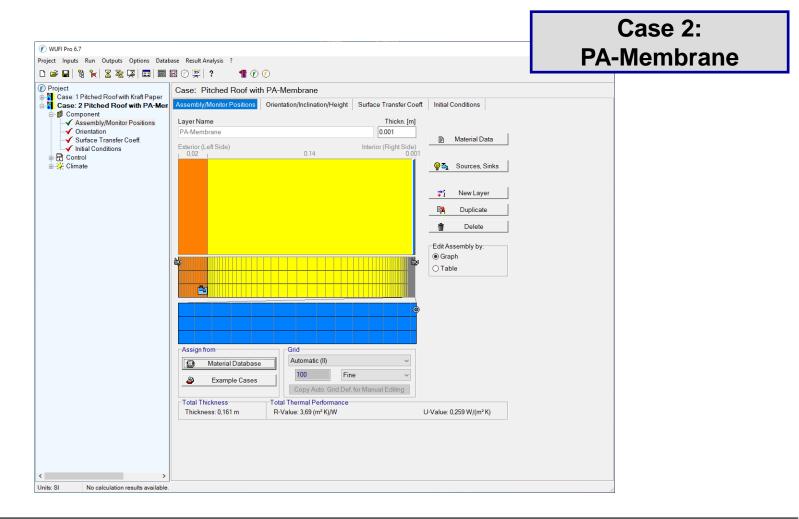
Case 1: Evaluation of the moisture conditions at vapour retarder

- Open WUFI® Animation
- Zoom in the boundary layer mineral wool / vapour retarder (while pressing the left mouse button: pull a box from the upper left to the lower right)
- Press the WUFI[®] Bio-Button
 in the taskbar and select the outermost element of the kraft paper.





Case 1: Settings in WUFI® Bio

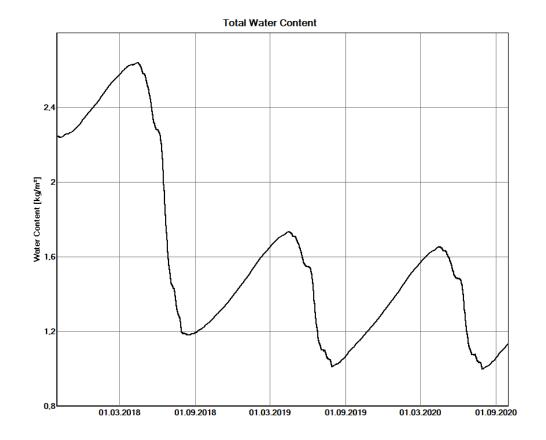

Case 1: Evaluation with WUFI® Bio

Case 2: Replacement of the Vapour Retarder

Input: Component - Assembly / Monitor Positions

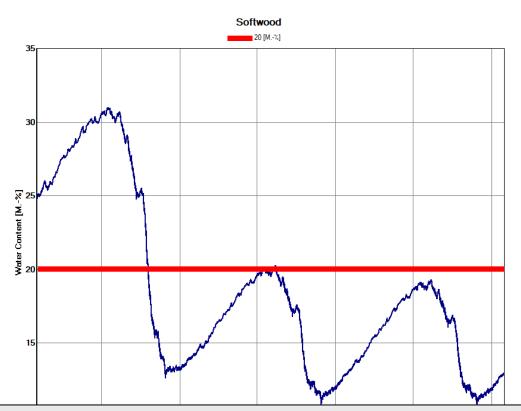
Evaluation: Numerics

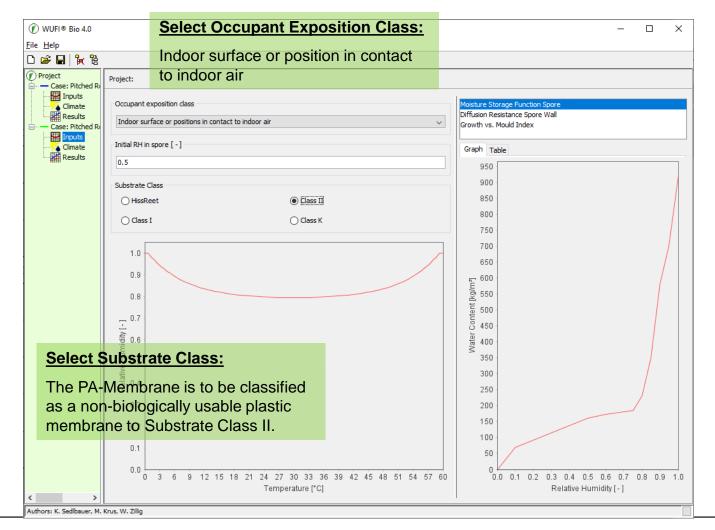
[Status of Last Calculation		×	:
	Status of Calculation		/	
	Calculation: Time and Date	16.07.202	4 11:32:52	
	Computing Time	0 min,4	40 sec.	
	Begin / End of calculation	01.10.2023 / 01.10.2026		
	No. of Convergence Failures	1	6	
	Check for numerical quality			Ō
	Integral of fluxes, left side (kl,dl)	[kg/m²]	0,0 -0,09	
	Integral of fluxes, right side (kr,dr)	[ka/m²]	0.0 1.38	
	Balance 1	[kg/m²]	-1,1	
	Balance 2	[kg/m²]	-1,11	
	Water Content [kg/m²]			
Some conve	gence failures, but balances OK!	Min	Max.	
\rightarrow if necessa	ry, recalculate with adaptive time step of			
•	witch on adaptive time step control). Ge y if the balances agree well!	enerally	Max.	•



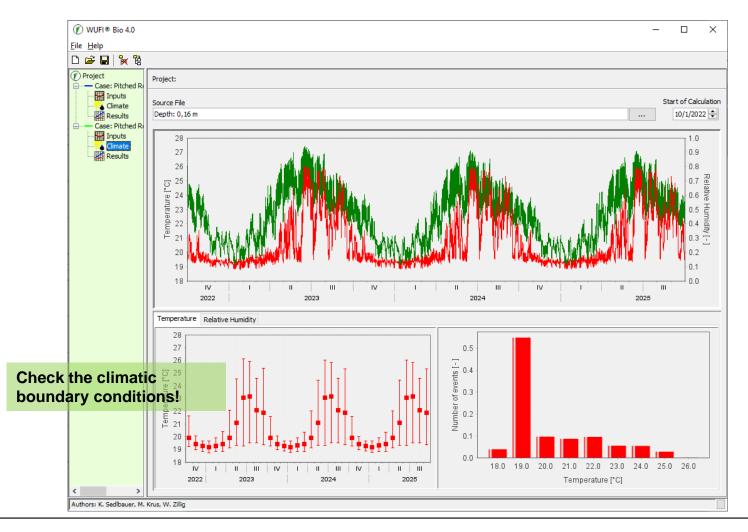
Evaluation: Numerics – with Adaptive Time Step Control

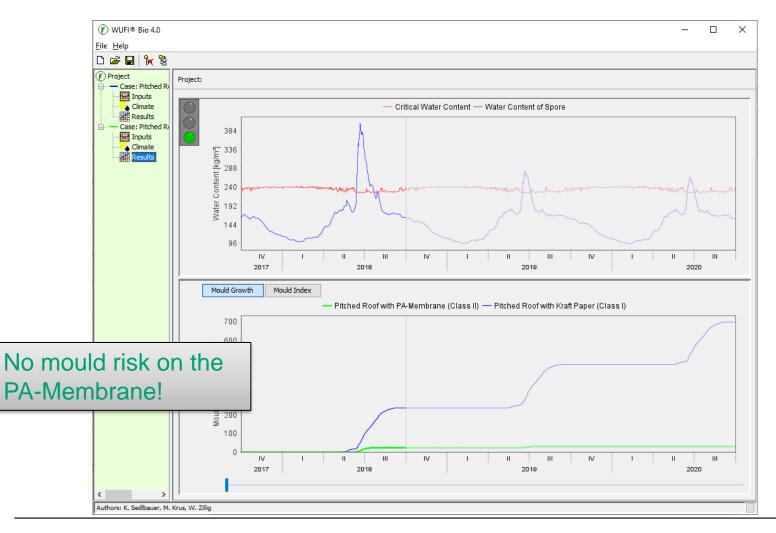
Status of Calculation					
Calculation: Time and Date	Calculation: Time and Date			16.07.2024 11:43:24	
Computing Time	Computing Time			0 min,41 sec.	
Begin / End of calculation				01.10.2023 / 01.10.2026 0	
No. of Convergence Failures					
Check for numerical quality			[kg/m²]	0,0 -0,09	
Integral of fluxes, left side (kl,dl)			[kg/m²]	0,0 -0,09	
Balance 1			[kg/m²]	-1,1	
Balance 2			[kg/m²]	-1,12	
Water Content [kg/m²]	Start	End	Min.	Max.	
Total Water Content	2,25	1,13	1,0	2,65	
Water Content [kg/m³]					
Layer/Material	Start	End	Min.	Max.	


Evaluation: Total water content


Case 2: Evaluation of the Wood Moisture in the Sheathing

Evaluation: Wood moisture in the sheathing – according to German Standard DIN 68800


After the redistribution of the initial moisture in the first year, the water content in the wooden sheathing remains below the limit value of 20 % by mass!



Case 2: Settings in WUFI® Bio

Case 2: Settings in WUFI® Bio

