Baufeuchte in Außenwand mit Wärmedämmverbundsystem

Baufeuchte in Außenwand mit WDVSWärmedämm-Verbundsysteme (WDVS) bilden nicht nur einen effektiven Wärmeschutz, sondern auch einen guten Witterungsschutz für Außenwände. Außer im Neubau werden sie deshalb auch erfolgreich bei der Altbausanierung eingesetzt. Im letzten Fall wirken sie gleichzeitig als dauerhafter Korrosionsschutz für die Bewehrung von Großtafelbauten [1]. In allen Fällen ist eine rasche Austrocknung der darunter liegenden Konstruktion erwünscht, um die Korrosion oder auch feuchtebedingte Transmissionswärmeverluste zu stoppen. Am Beispiel einer 24 cm starken Kalksandsteinwand mit 80 mm Außendämmung aus Mineralwolle (MW) bzw. Polystyrol-Hartschaum (EPS) wird die Austrocknung der Baufeuchte rechnerisch und experimentell untersucht sowie auf Ergebnisse und Schlußfolgerungen weiterer Berechnungen verwiesen.

Details zu Wandaufbau, Materialeigenschaften und Durchführung der Freilanduntersuchungen und WUFI-Simulationen sind in [2] enthalten (siehe auch das Beispiel in der WUFI-Tour). Die berechneten und gemessenen Wassergehaltsverteilungen in den Wänden zu verschiedenen Zeitpunkten nach Aufbau des Versuchshauses sind in Bild 1 dargestellt (Beprobung durch Bohrkernentnahme). Sowohl für die Wand mit EPS-Dämmung als auch für die mit MW-Dämmung wird eine gute Übereinstimmung zwischen Messung und Berechnung erzielt.

Die Form der Feuchteprofile zeigt, daß die Austrocknung bei der Wand mit EPS-Dämmung in erster Linie zum Raum hin erfolgt, während die Mineralwolle auch eine deutliche Trocknung des Mauerwerks nach außen zuläßt. Insgesamt dauert die Austrocknung der Wand bis zum hygroskopischen Ausgleichszustand mit Mineralwolledämmung eineinhalb Jahre und mit EPS-Dämmung etwa doppelt so lange. Während der Trocknungsphase sind die Wärmeverluste des Gebäudes durch erhöhte Transmission, aber auch durch die erforderliche zusätzliche Lüftung zum Abführen der Baufeuchte, nicht zu vernachlässigen. Im Fall des wenig dämmenden Kalksandsteinmauerwerks beträgt die feuchtebedingte Erhöhung des U-Wertes im ersten Jahr etwa 5%. Bei Mauerwerk aus porosierten Hochlochziegeln unter dem WDVS schlägt dieser Effekt nach Berechnungen in [3] mit ca. 25% zu Buche.

Da der projektierte Wärmeschutz erst am Ende der Austrocknung erreicht wird, sind schnell trocknende Wandaufbauten energetisch günstig. Am besten sind beidseitig diffusionsoffene Konstruktionen die gleichmäßig nach außen und innen trocknen können. Im Fall einer diffusionshemmenden Umschließung des Mauerwerks, z.B. außen durch eine EPS-Dämmung und innen durch einen Fliesenbelag, kann es über fünf Jahre dauern bis die Baufeuchte vollständig ausgetrocknet ist.
Literatur
[1] Cziesielski, E.: Energiegerechte Sanierung von Korrosionsschäden bei Stahlbetongebäuden. Bauphysik 13 (1991), H.5, S.138-143.
[2] Künzel, H.M.: Austrocknung von Wandkonstruktionen mit Wärmedämm-Verbundsystemen. Bauphysik 20 (1998), H.1, S.18-23.
[3] Holm, A. und Künzel, H.M.: Trocknung von Mauerwerk mit Wärmedämmverbundsystemen und Einfluß auf den Wärmedurchgang. Tagungsband 10. Bauklimatisches Symposium, Dresden 1999, S.549-558

 

Seite erstellt: 20 Apr 2001; letzte Änderung: 16 Jul 2012

Perimeterdämmung im Grundwasserbereich

Perimeterdämmung im Grundwasserbereich

Die Perimeterdämmung ist aus feuchtetechnischer Sicht unter mitteleuropäischen Klimabedingungen i.a. unproblematisch. Eine Ausnahme bildet die Situation bei drückendem Wasser. In diesem Fall sind ausschließlich geschlossenzellige Dämmstoffe, wie Schaumglas oder extrudierter Polystyrol-Hartschaum (XPS) zulässig.

Da XPS im Gegensatz zu Schaumglas eine gewisse Dampfdurchlässigkeit besitzt, muß dort beim Anbringen der Dämmung dafür Sorge getragen werden, daß langfristig kein Wasser hinter die Dämmplatten gelangen kann. Dies kann nur durch eine dauerhafte, vollflächige Verklebung zwischen Kellerwand und Dämmplatten erreicht werden. Leider zeigt die Praxis, daß diese Vorgabe in Einzelfällen nicht ausreichend berücksichtigt wird und Feuchte in Bereiche mit fehlender oder mangelhafter Verklebung eindringt. Von der warmen Seite der Dämmschicht aus wird dann Feuchte durch Dampfdiffusion in kühlere Bereiche des Dämmmaterials transportiert. Die Folge ist ein Auffeuchten der Dämmplatten rund um diese Fehlstellen mit entsprechenden Folgen für die Wärmedämmung des Kellers.

In [1] wurde das Feuchteverhalten der XPS-Perimeterdämmung eines beheizten Kellers für den Fall der Hinterfeuchtung durch Grundwasser rechnerisch simuliert. Unter den in Bild 1 gezeigten Erdreichtemperaturverhältnissen führt die Diffusion des warmseitig eingedrungenen Grundwassers zu einer annähernd kontinuierlichen Feuchtezunahme der Dämmplatten (Bild 2).

Im Gegensatz zu stichprobenartigen Messungen erlaubt die Berechnung hier eine Extrapolation der Feuchteverhältnisse über einen längeren Zeitraum. Die langfristige Feuchteakkumulation ist bei einer nur 50 mm dicken Perimeterdämmung deutlich stärker ausgeprägt als bei einer Dämmschichtdicke von 80 mm. Aufgrund des flacheren Temperaturgradienten in der dickeren Dämmschicht entsteht ein kleineres warmseitiges Dampfdruckgefälle, was wiederum zu einer geringeren Feuchteaufnahme durch Dampfdiffusion führt. In beiden Fällen wird der Wärmedurchgangskoeffizient (U-Wert) der gedämmten Kellerwand im Bereich der Fehlstelle im Laufe von 30 Jahren deutlich erhöht (ca. 70 % bei 80 mm und 140 % bei 50 mm). Eine derartige Verschlechterung der Dämmwirkung ist nicht hinnehmbar. Deshalb kommt der sorgfältigen Verlegung von XPS-Perimeterdämmplatten bei drückendem Wasser eine besondere Bedeutung zu.

Literatur

Künzel, H.M.: Feuchteaufnahme von Perimeterdämmplatten aus extrudiertem Polystyrol-Hartschaum im Grundwasserbereich bei nicht vollflächiger Verklebung. IBP-Bericht FtB-38/1995.

Seite erstellt: 20 Apr 2001; letzte Änderung: 16 Jul 2012