Release Candidate WUFI® Pro 7 jetzt testen

WUFI 7 Release CandidateDie neue Version WUFI® Pro 7 ist nun in einem neuen Gewand und mit neuen Funktionen zum Testen verfügbar. Wir arbeiten mit Hochdruck am Release, das in Kürze erscheinen wird. Wir bieten Ihnen jetzt schon die Möglichkeit, unseren Release Candidate vorab zu testen und die neuen Funktionen auszuprobieren.

So können Sie den Release Candidate installieren:

1. Installationsdatei hier <https://wufi.de/download/rc/Install_WUFI7_rc1.zip> herunterladen und entpacken.
2. Installation ausführen
3. WUFI® Pro 7 starten
Es erscheint eine Abfrage des Lizenzschlüssels – wählen sie hier „Testversion“ und geben Sie Ihren Namen und Ihre E-Mail-Adresse an – danach können Sie loslegen.

Contine reading

WUFI® Pro Update Seminar am 23. und 24. November

WUFI Seminar DIN 4108-3 FeuchteschutzUnser nächstes WUFI® Pro Update-Seminar ist am 23. und 24. November in Holzkirchen geplant.

Aufbauend auf dem Basis-Seminar behandelt das Update-Seminar speziellere Problemfelder und Lösungswege. Themenfelder sind dieses Mal u.a. Verschattung, Dachbegrünungen, Innendämmung, und die Anpassung von Materialkennwerten. Weiterhin erhalten Sie nützliche Informationen zu unseren aktuellen Forschungsthemen.

Weitere Informationen finden Sie auf unserer Homepage.

Es sind noch Plätze verfügbar! Melden Sie sich jetzt an.
Anmeldung per Mail

WUFI® Pro Online-Update-Seminar (test)

WUFI Online SeminarUnser nächstes WUFI® Update-Seminar zur Vertiefung der hygrothermischen Simulation findet am 2. und 3. Dezember online statt.

Bei diesem Seminar erhalten Sie viele nützliche Informationen aus aktuellen Forschungen. Weiterhin zeigen wir Ihnen Lösungswege anhand konkreter Fälle auf sowie Tipps und Tricks, wie Sie Berechnungen mit WUFI® Pro ausführen und diese anschließend auswerten.

Weitere Informationen finden Sie auf unserer Seminar-Seite.

Melden Sie sich jetzt an!
Anmeldung per Mail

Neue Preise für WUFI® Pro ab 3. Juni 2019


Ab 3. Juni 2019 müssen wir unsere Preise für WUFI Pro anpassen:

Lizenzbisherneu
WUFI® Pro 6 - 10 Jahre2300 EUR2600 EUR
WUFI® Pro 6 - 1 Jahr850 EUR900 EUR
Upgrade auf WUFI® Pro 6 900 EUR950 EUR

Preise für Mehrfachlizenzen und Paketpreise ändern sich analog.
Bis zum 2. Juni können Sie WUFI® Pro noch zum alten Preis zu erwerben!

Webshop

Ab 3. Juni 2019 müssen wir unsere Preise für WUFI Pro anpassen:

Lizenzbisherneu
WUFI® Pro 6 - 10 Jahre2300 EUR2600 EUR
WUFI® Pro 6 - 1 Jahr850 EUR900 EUR
Upgrade auf WUFI® Pro 6 900 EUR950 EUR

Preise für Mehrfachlizenzen und Paketpreise ändern sich analog.
Bis zum 2. Juni können Sie WUFI® Pro noch zum alten Preis zu erwerben!

Webshop

Release WUFI® Pro 6.3.2

WUFI Pro 6.3.2-LogoDie Version 6.3.2 von WUFI® Pro ist nun erhältlich.

Nutzer von WUFI® Pro 6 können das Update kostenfrei herunter-laden. Sie können hierzu den Link verwenden, den Sie beim Kauf von WUFI® Pro 6 erhalten haben und der auch in Ihrem Konto im Webshop unter „Meine Aufträge“ angezeigt wird.

Bei Neukauf erhalten Sie ab sofort direkt die Version WUFI® Pro 6.3.2.

Neue Funktionen und Änderungen seit Version 6.3.1:

  • Erweiterte Überprüfung bei der Eingabe von Materialdaten
  • Korrekturen am Klimadialog
  • Kleinere Bugfixes und Korrekturen
Contine reading

WUFI® Pro Basis Seminar am 20. – 21. im Februar in Holzkirchen

Unser nächstes WUFI® Pro Basis-Seminar findet am 20.-21. im Februar am Fraunhofer Institut für Bauphysik in Holzkirchen statt.

Bei diesem Seminar führen wir Sie in die Grundlagen der hygrothermischen Simulationen ein, zeigen Ihnen die Handhabung von WUFI® inkl. aller relevanten Eingaben und erklären die Auswertungsmethodik. Weiterhin üben wir mit Ihnen zusammen den Umgang mit dem Programm mit Hilfe praxisnaher Projektarbeiten.

Weitere Informationen finden Sie auf unserer Seminar-Seite.

Melden Sie sich jetzt an!

Lokalklima_entwurf

Der Lokalklimagenerator wurde im Rahmen des vom BMWi geförderten Forschungsprojektes „Klimamodelle“ vom Fraunhofer Institut für Bauphysik (IBP) entwickelt. Er ermöglicht die Anpassung von Referenzklimadatensätzen auf die spezifischen lokalen Gegebenheiten, wie z.B. die Nähe zu einem Gewässer oder eine innerstädtische Lage. Ebenso ist über eine Anpassung auf die lokalen Wind- und Niederschlagsverhältnisse – also die Schlagregenbelastung – möglich, was z.B. bei innen gedämmten Bauteilen eine maßgebliche Größe darstellt. Weitere Informationen zu den verwendeten Anpassungsfunktionen können dem Abschlussbericht entnommen werden. Contine reading

Beurteilung des Schimmelpilzwachstums

Beurteilung des SchimmelpilzwachstumsBei ungünstigen Umgebungsbedingungen kann auf Bauteiloberflächen mikrobielles Wachstum entstehen. Die wichtigsten Einflußparameter sind Temperatur und relative Feuchte sowie ein entsprechender Nährboden und die tägliche Dauer der zusammenwirkend wachstumfördernden Bedingungen (Koinzidenzdauer). Während Bakterien zum Wachstum relative Luftfeuchten von mindestens 90% benötigen, können gewisse xerophile Schimmelpilzarten schon ab Feuchten von 65%, die meisten Arten ab 80% gedeihen. Die größte Temperaturbandbreite für das Gedeihen liegt ebenfalls beim Schimmelpilz vor, nämlich zwischen 0°C und 50°C. Daher wird generell im genannten Temperatur- und Feuchtebereich ein Gefährdungspotential gesehen.

Bild 1 zeigt die qualitative Bewertung der Wachstumsbedingungen für Schimmelpilze in Abhängigkeit von den genannten Einflußfaktoren. Diese funktionalen Zusammenhänge bilden die Basis für eine Prognosemethode zur Beurteilung von Schimmelpilzwachstum, die bereits mehrfach angewendet und experimentell validiert wurde [1]. Als Eingangsdaten fungieren die lokalen Temperatur- und Feuchteverhältnisse aus der instationären Simulation. Die erforderliche Verknüpfung der Einflußparameter erfolgt mit Hilfe der Fuzzy-Logik. Sie berücksichtigt die in der Natur vorhandene Unschärfe z.B. bei der Angabe eines für das Wachstum der Schimmelpilze günstigen Feuchtebereichs. Das Ergebnis der Prognose ist ein Maß für die Stärke des Schimmelpilzwachstums. An einer Erweiterung der vorgestellten instationären Methode hin zu einem Sicherheitskonzept bzgl. der Vermeidung von Schimmelpilzwachstum, wie es in [2] gefordert und für stationäre Verhältnisse abgeleitet wurde, wird noch gearbeitet.

Literatur

Sedlbauer, K.; Oswald, D.; König, N.: Schimmelgefahr bei offenen Luftkreisläufen. Vorstellung einer Prognosemethode auf der Basis von Fuzzy-Algorithmen. Gesundheits-Ingenieur, Heft 5 (1998), S. 240 – 247.
Cziesielski, E.: Schimmelpilz – ein komplexes Thema. Wo liegen die Fehler? wksb 44 (1999), H. 43, S. 25 – 28.

 

Seite erstellt: 20 Apr 2001; letzte Änderung: 16 Jul 2012

Nachträglich gedämmtes Steildach

Nachträglich gedämmtes SteildachDer Dachausbau im Altbaubereich gewinnt zunehmend an Bedeutung. Da die unbelüftete Ausführung einer nachträglichen Dämmaßnahme handwerklich einfacher und wärmetechnisch günstiger ist, sollte sie, wenn feuchtetechnisch machbar, einer belüfteten Variante vorgezogen werden. Da ältere Steildächer meist relativ dampfdichte Vordeckungen (z.B. Bitumenpappe auf Holzschalung) besitzen, ist eine Analyse der Tauwassersituation unerläßlich. Nach DIN 4108-3 erübrigt sich ein rechnerischer Nachweis, wenn die raumseitige Dampfsperre einen sehr hohen Sperrwert (sd > 100 m) aufweist. Aufgrund der großen Gefahr, daß bei solchen beidseitig dampfdichten Konstruktionen kleine Fehlstellen oder Leckagen schwere Feuchteschäden nach sich ziehen können, wird bereits in [1] zu recht davon abgeraten, dieser Normvorgabe zu folgen. Statt dessen wird dort der Einsatz von Dampfbremsen empfohlen, deren Sperrwert so hoch ist, daß sie zwar den winterlichen Tauwasserausfall bis auf ein unkritisches Maß begrenzen, gleichzeitig jedoch auch eine gewisse Austrocknung im Bauteil vorhandener Feuchte im Sommer zulassen.

Dies ist ein typisches Optimierungsproblem, das die Vorteile der rechnerischen Simulation besonders deutlich macht. Setzt man hier das herkömmliche Glaser-Verfahren ein, ergibt sich ein minimaler sd-Wert von ca. 2 m. Unbedenklich ist die Konstruktion jedoch nur, wenn die Randbedingungen für Dächer (Oberflächentemperatur 20 °C) angesetzt werden. Legt man die Randbedingungen für Wände zu Grunde, dann übersteigt in der Regel die Tauwassermenge die Verdunstungsmenge und die Konstruktion wird unzulässig. Ob ein steil nach Norden geneigtes Dach besser mit den Randbedingungen für sonnenbeschienene Flachdächer oder mit den Bedingungen für Wände zu beurteilen ist, bleibt der Einschätzung des Anwenders überlassen. Hier soll gezeigt werden, zu welchen Aussagen man mit Hilfe von WUFI-Berechnungen kommen kann.

Anhand der Feuchteentwicklung in einer nordorientierten, 50° geneigten und unbelüfteten Satteldachhälfte mit Zwischensparrendämmung und dampfdichter Vordeckung wurden in [2] die Auswirkungen unterschiedlicher Randbedingungen und Diffusionseigenschaften der Dampfbremse rechnerisch untersucht. Bild 1 zeigt drei sd-Wert-abhängige Verläufe des Gesamtwassergehaltes in diesem Dach bei normalen Nutzungsbedingungen und typischen Holzkirchner Klimaverhältnissen, ausgehend von der hygroskopischen Ausgleichsfeuchte bei 80% r.F. Hat die Dampfbremse einen Sperrwert von 0,5 m, nimmt das Dach im Winter etwa 1,5 kg/m² Feuchte aus der Raumluft auf und gibt diese im nächsten Sommer wieder vollständig ab, wobei am Ende des Beobachtungszeitraumes nach sechs Jahren der Gesamtwassergehalt etwa der Ausgangsfeuchte entspricht. Die hohe Feuchtezunahme im Winter übersteigt jedoch die Grenzwerte für den maximalen Tauwasserausfall in DIN 4108 und kann wegen der Gefahr von zusammenlaufendem Tauwasser nicht toleriert werden. Wird der Sperrwert der Dampfbremse um den Faktor zehn erhöht, bleibt die Feuchtezunahme deutlich unter dem kritischen Wert von 0,5 kg/m². Dafür findet jetzt jedoch eine langfristige Feuchteakkumulation statt, wie der langsame Anstieg des berechneten Verlaufs über die Jahre zeigt. Eine Lösung bietet in diesem Fall eine Dampfbremse mit variablem sd-Wert, die auf Grund ihrer feuchteadaptiven Eigenschaften im Winter dampfdichter ist als im Sommer. Hiermit wird trotz unbedenklicher Feuchtezunahme durch winterlichen Tauwasserausfall ein großes sommerliches Trocknungspotential erreicht, was sich durch die vergleichsweise geringste Endfeuchte im Dach manifestiert.

Die Entdeckung dieser speziellen Dampfbremse geht auf Spezifikationen durch umfangreiche WUFI-Berechnungen zurück und ist ein Beispiel für den erfolgreichen Einsatz der hygrothermischen Simulation zur Entwicklung und Optimierung von Bauprodukten [3].

 

Literatur

Schulze, H.: Hausdächer in Holzbauart. Werner-Verlag, Düsseldorf 1987.
Künzel, H.M.: Bedeutung von Klimabedingungen und Diffusionseigenschaften für die Feuchtesicherheit voll gedämmter Altbaudächer. Festschrift zum 60. Geburtstag von Prof. Gertis. Fraunhofer IRB Verlag, Stuttgart 1998, S.371-389.
Künzel, H.M. und Kasper, F.-J.: Von der Idee einer feuchteadaptiven Dampfbremse bis zur Markteinführung. Bauphysik 20 (1998), H.6, S.257-260.

 

Seite erstellt: 20 Apr 2001; letzte Änderung: 16 Jul 2012